

A Golden Age for Advanced Lead Battery Innovation

FENIBAT 22-24 May 2022

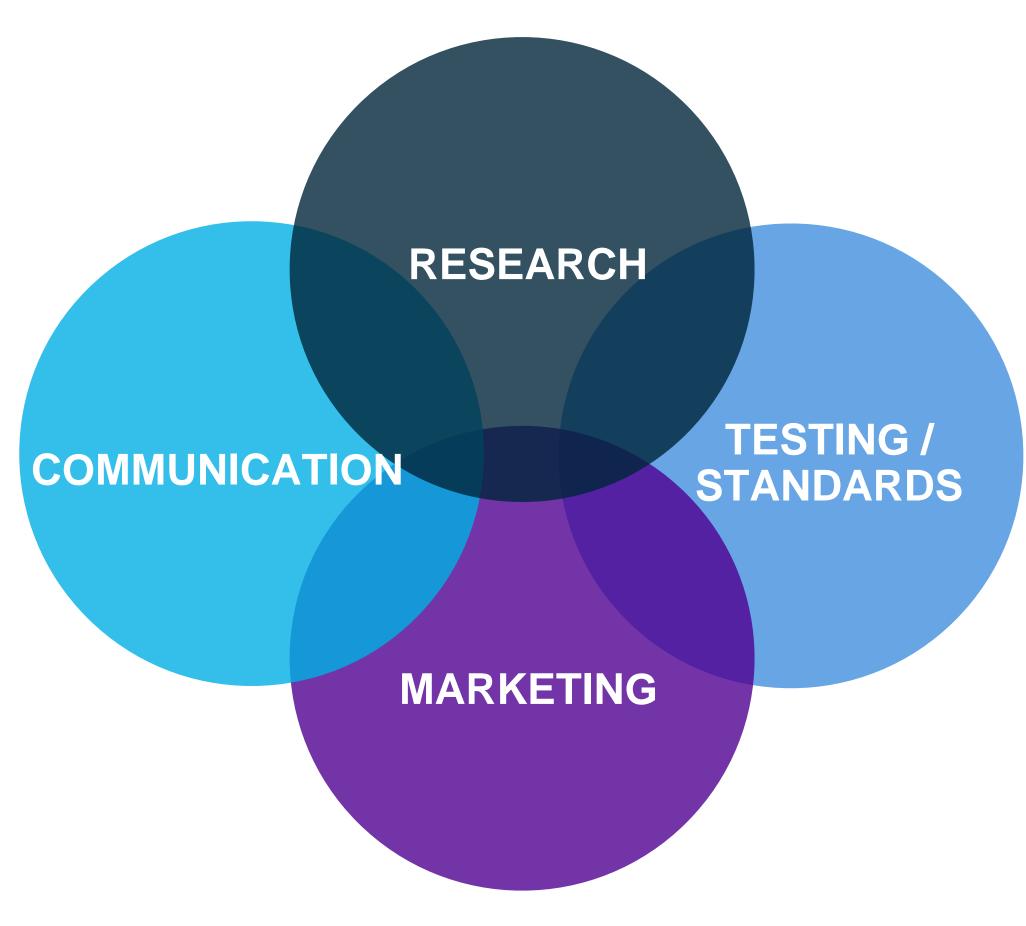
Presented by:

Dr Alistair Davidson, Director, Consortium for Battery Innovation

Map of Members and Partners

RESEARCH

Better batteries


Facilitate improvements in battery and systems performance

- Market analysis
- Technical roadmap
- Core research program
- Government & other funded research
- Technical exchange

COMMUNICATION Better recognition (non-user stakeholders)

Communicating innovation in lead battery performance and applications

- Demonstrate lead batteries technology of future-change perception
- Direct stakeholder engagement (MEPs, Commission, DOE, Governments)
- Media Narrative (Social Media, articles, videos, PRs, blogs etc.)
- Lead battery information hub (websitetechnical data, market information etc.)

TESTING / STANDARDS

Better recognition (industry/legislative standards)

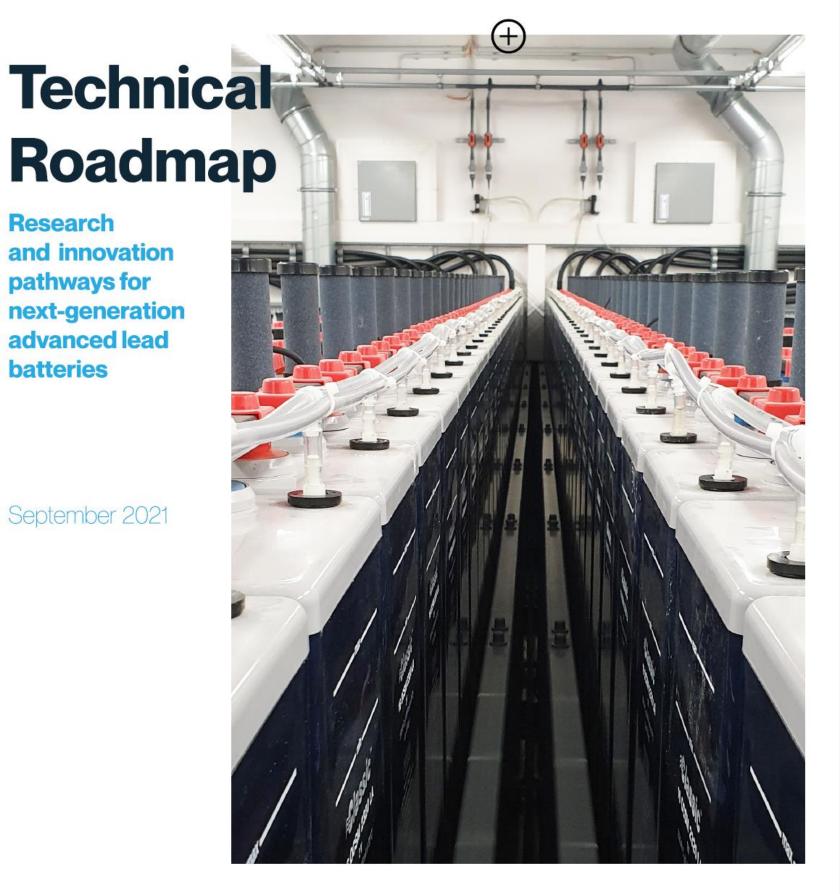
Tests and standards that recognize lead battery benefits

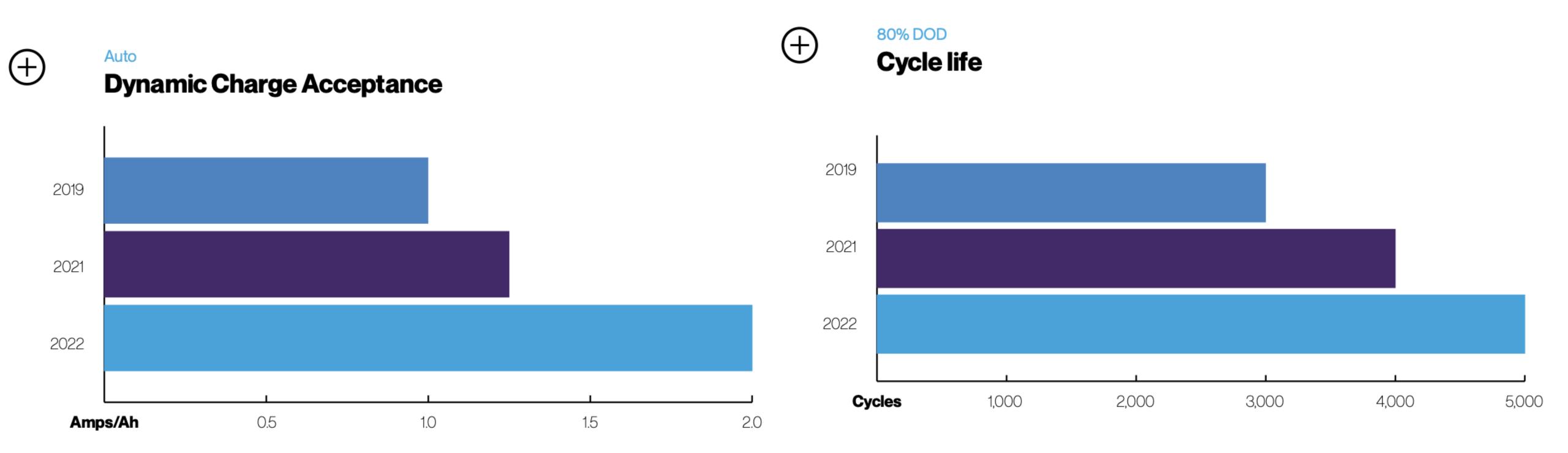
- Test method development
- Technical exchange on testing
- Linking research to standards
- Coordination of industry input into standards committees

MARKETING Better recognition (end users)

Improve end user recognition of lead battery benefits

- Workshops
- Interactive Map
- Case studies and videos
- Battery Match
- Target industry media
- Demo projects
- Conferences and exhibitions
- Technical papers and publications
- Lead battery resource hub (website)


CBI's 2021 Technical Roadmap


September 2021

batteries

Progress since last CBI's 2019 Technical Roadmap

(+) Automotive

(start-stop/micro-hybrid)

Ensure that recent improvements in Dynamic Charge Acceptance (DCA) are maintained, whilst improving high-temperature performance and ensuring no trade-offs in key parameters such as Cold Crank Amps (CCA) and water loss.

(+)

Automotive

(low-voltage EV)

Improve DCA and charge acceptance, whilst increasing charging efficiency and lifetime.

(+)

Energy Storage Systems

Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.

 \oplus

Industrial applications

Improving cycle and calendar life, whilst reducing battery costs.

 \oplus

Motive Power

Lowering TCO by increasing cycle life, recharge time, and producing maintenance-free batteries.

 \oplus

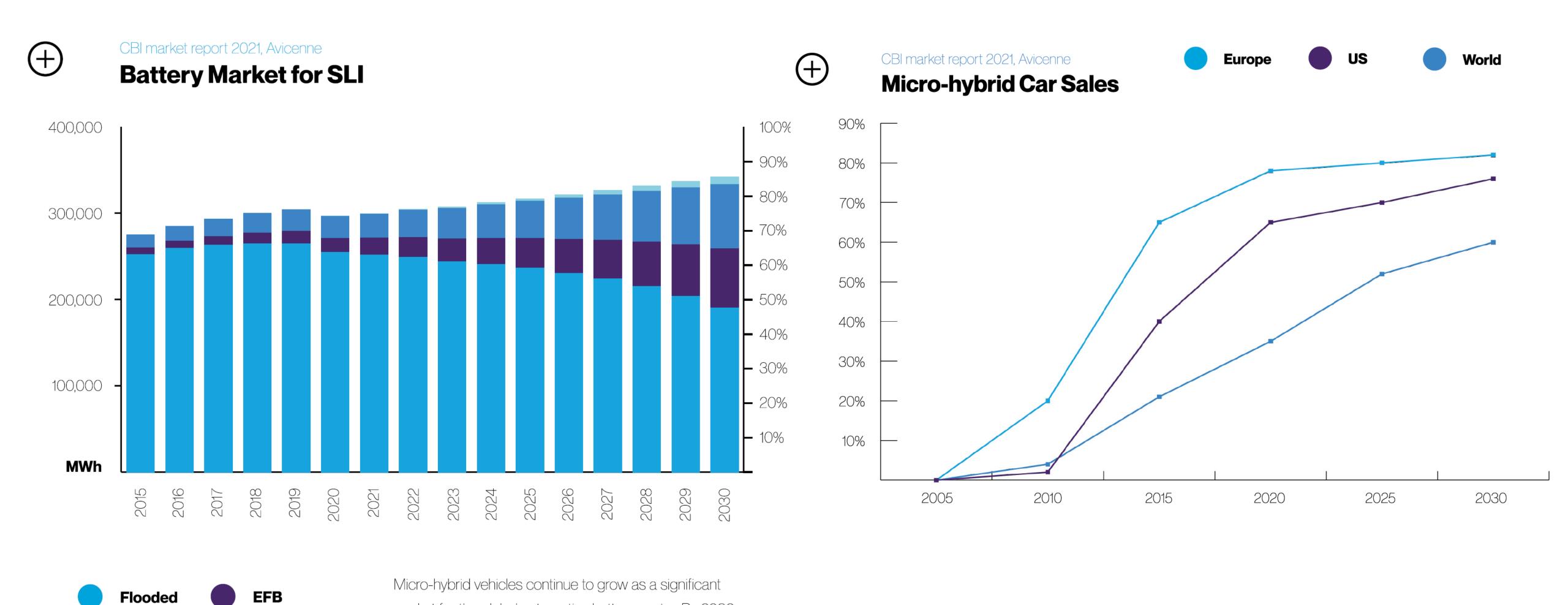
Other applications

(including e-bikes)

Improving gravimetric energy density, recharge capability and service life.

AGM

LIB


12 V Automotive Battery Market

market for the global automotive battery sector. By 2030,

leading the way with an expected 82% of sales by 2030,

60% of global sales will be micro-hybrids, with Europe

and the US close behind with 75%.

Automotive

(start-stop/micro-hybrid)

Ensure that recent improvements in Dynamic Charge Acceptance (DCA) are maintained, whilst improving high-temperature performance and ensuring no trade-offs in key parameters such as Cold Crank Amps (CCA) and water loss.

Indicator (start-stop, micro/hybrid)	2021/2022	2025	2030
DCA (EN 50342-6, A/Ah) ^a	1.25	2.0	2.0
Ford Run-In Test B (A/Ah)	1.0	1.5	2.0
Durability: HTE (IEC/CENELEC draft)	16	20	20
Water Loss – EN/HTE (g/Ah)	<3	<3	<3
CCA, RC (comment)	Must not be compromised	Must not be compromised	Must not be compromised

EN 50342-6:2015 (M1, M2, M3 classification) should be used for cycle life requirements Maintain 15 weeks of SAE J2801

^a DCA testing from EN 50342 – 6: 2015 theoretically only allows a DCA value up to 1.67 A/Ah (33*120). DCRss discharge rate may be too low. An adjustment of the EN DCA protocol would be necessary.

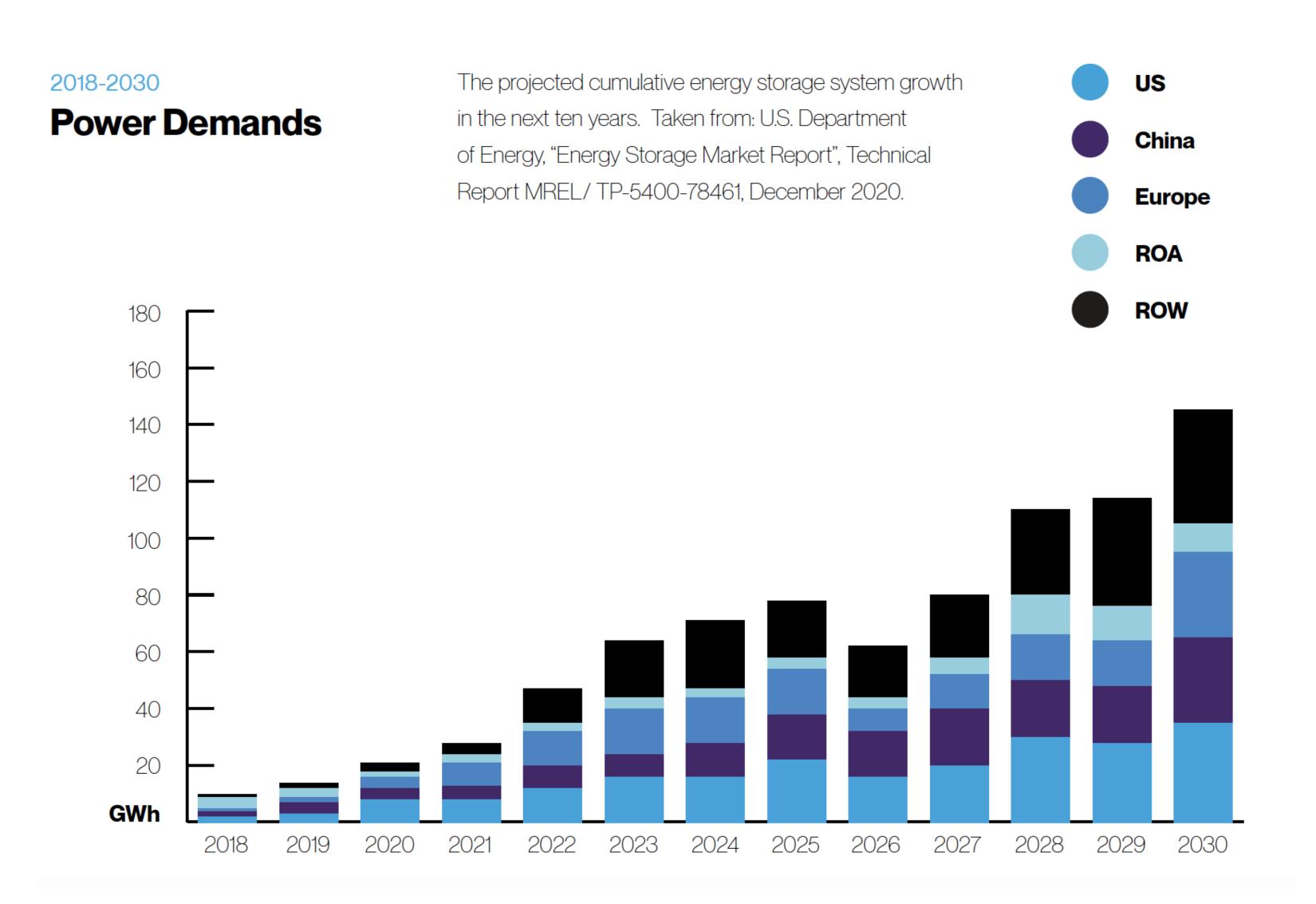
Automotive KPIs – Low Voltage EV (Auxiliary)

- DCA and CA are important metrics to consider in auxiliary batteries.
- The actual use of auxiliary by OEs and the consumer alike is unpredictable, and further test development is likely needed.
- Float charging may be a concern accurate testing of this use case is underway within IEC.

Automotive

(low-voltage EV)

Improve DCA and charge acceptance, whilst increasing charging efficiency and lifetime.



Conservative reporting predicts massive growth

- Strong growth in all areas.
- 100's of billions of dollars of government moneys directed toward this sector.

Key growth area for lead battery industry.

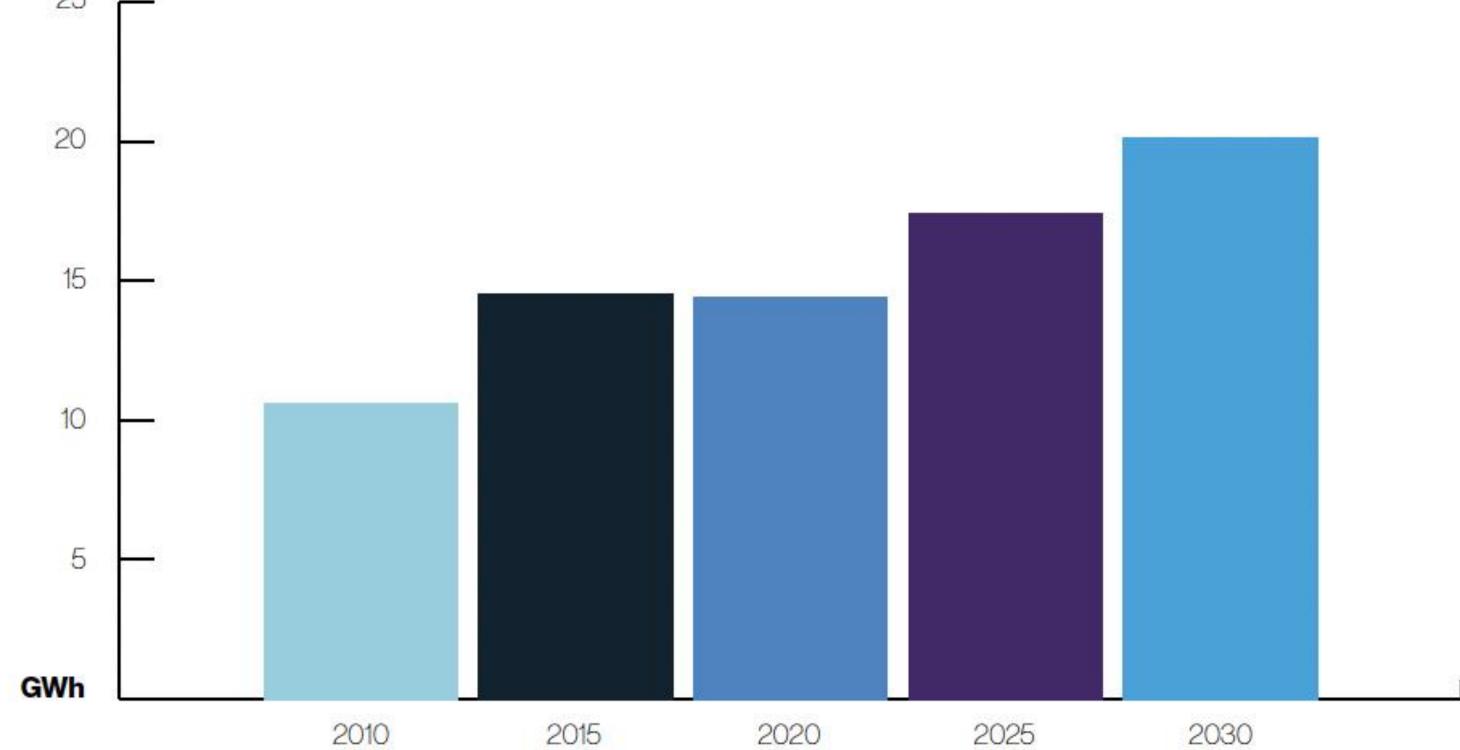
- Productization is vital.
- Residential (Safe, advanced batteries)
- 1-10 MW industrial (Multiple technology approach
- Long duration, shallow cycling (Lead battery chemistry excels in this duty cycle).

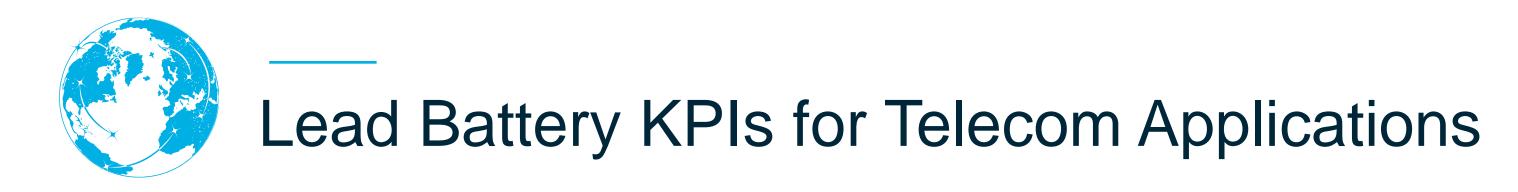
Energy Storage Systems

Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.

Indicator	2021/2022	2025	2028	Stretch Target 2030
Service life (years)	12-15	15-20	15-20	15-20
Cycle life (80% DOD) as an estimate for C10 or higher rates	4000	4500	5000	6000
Operational cost for low charge rate applications (above C10) – Grid scale, long duration	0.12 \$/kWh/energy throughput	0.09 \$/kWh/energy throughput	0.06 \$/kWh/energy throughput	0.04 \$/kWh/energy throughput
Operational cost for high charge rate applications (C10 or faster) - BTMS	0.25 \$/kWh/energy throughput	0.20 \$/kWh/energy throughput	0.15 \$/kWh/energy throughput	0.10 \$/kWh/energy throughput
Energy Storage efficiency (Wh in vs Wh out)(%)	75-90	80-90	85-90	88-92

Energy Storage Systems


Improving cycle life, calendar life and round-trip efficiency whilst reducing acquisition and operating costs.


Indicator	2021/2022	2025	2028	Stretch Target 2030
Round Trip Efficiency (%)	85	88	90	92
Acquisition Cost (cell level) (\$/kWh – 10 MW assumption)	175	140	100	75
Energy Density (Wh/l)	80-100	110	120	140
Acquisition cost, ESS level (\$/kWh)	350	325	300	275
Safety	Maintain safety – deploy	charging algorithms to con	trol gassing	

- Strong market growth beyond current reports.
 - H&V market information gathering has indicated ~23% growth in market to April 2021.
 - 5G deployments combined with deferred orders during 2020 (due to COVID).
 - Demand is very strong.
- Healthy CAGR ~4-6% over next decade.
- 5.6 GWh predicted.

Research targets

KPIs for lead batteries in telecom applications

\oplus	Industrial applications
	Improving cycle and calendar life, whilst

Improving cycle and calendar life, whilst reducing battery costs.

Indicator	2021/2022	2028
Calendar Life on float	15 y at 20°C	7-10 y at 40°C 20 y at 20°C
Cycle life (Testing should follow IEC 60896-21/22)	300 at 80% DoD	500 at 80% DoD
Cost	\$175/kWh	\$150/kWh

Maintain Safety and Recyclability, Maintain Shelf life


- Data center growth has pushed this market to new plateaus.
 - Lead batteries enjoy a small footprint due to current IFC/NFPA standards.
- Similar to Telecom market, approximately 5.5 GWh growth from 2020.
- Also similar to telecom, unprecedented market growth (~17%) due to back orders and investment in data center growth.

CBI market report 2021, Avicenne

UPS Battery Demand

By enhancing the cycle life and charging efficiency of lead batteries, whilst lowering total cost of ownership (TCO) future opportunities for lead battery technology in this market are substantial.

Research targets

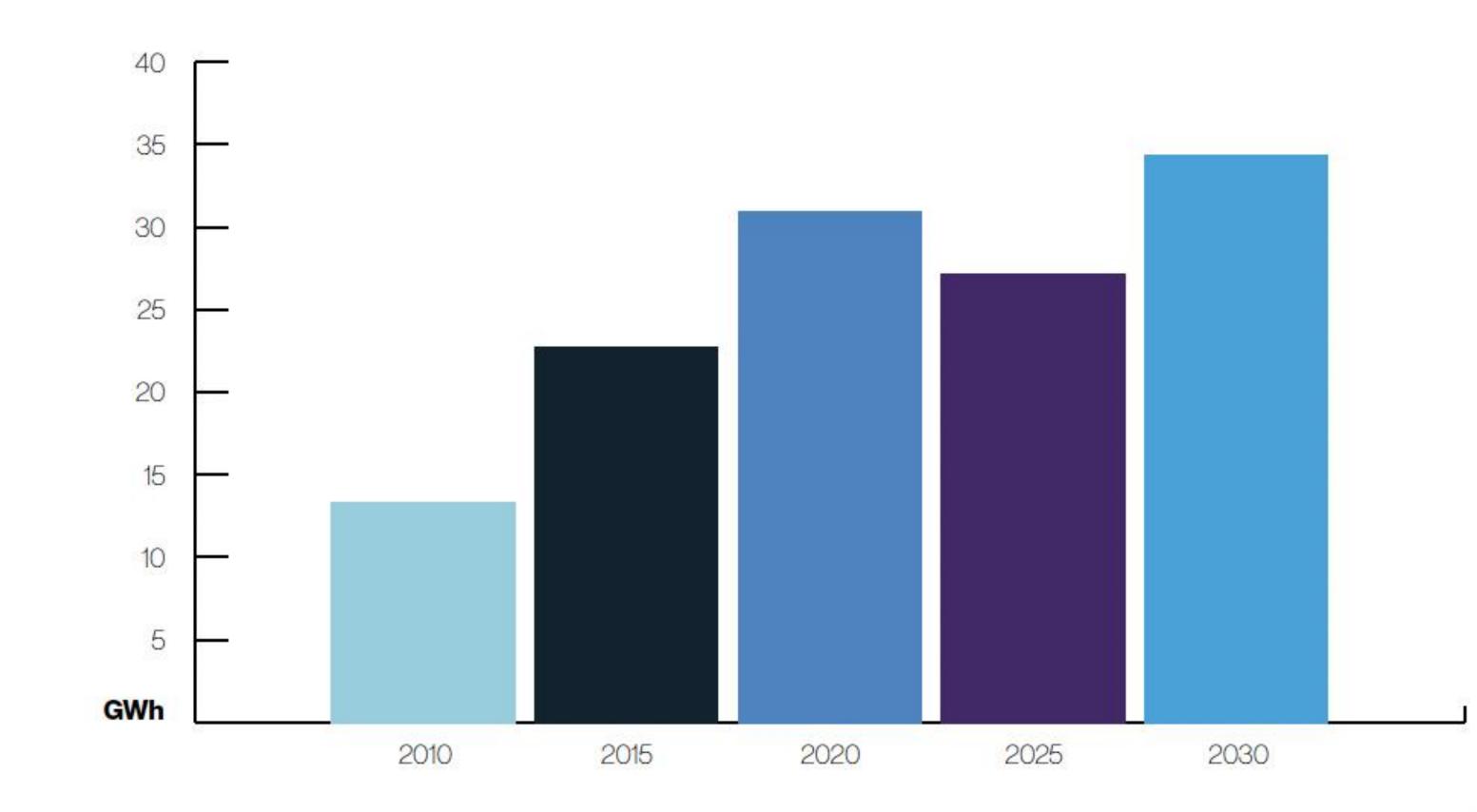
KPIs for lead batteries in UPS applications

(\subseteq	Ĺ	١	

Industrial applications

Improving cycle and calendar life, whilst reducing battery costs.

Indicator	2021/2022	2028
Calendar Life on float	10 y at 20°C	15 y at 20°C
Peukert Capacity (15-minute vs. 10-hour capacity)	65-80%	85-90%
Cycle life Testing should follow IEC 60896-21/22	1000 at 50% DoD 6000 at 10% DoD	5000 at 50% DoD 12000 at 10% DoD
Cost	\$175/kWh	\$150/kWh


Maintain Safety and Recyclability, Maintain Shelf life

- Significant penetration from Li-ion
- "Lift all ships" currently happening in market.
 - Heavy demand for trucks and replacement batteries.
 - Lead battery demand is up 6% relative to 2019.
- High volatility in market predictions.
- CARB initiative in California is an example of electrification efforts posing a great opportunity.
 - Similar initiatives are possible NY and parts of EU.

With the market predicted to grow to 34.3 GWh by 2030, this is a significant sector for lead batteries.

Motive Power Battery KPIs

Research targets

KPIs for lead batteries in motive power applications

Indicator	2021/2022	2025	2028
Service life	5	5-6	6-7
Energy throughput	1200 equivalent cycles	1400 equivalent cycles	1600 equivalent cycles
Cycle life IEC 60254	2400 (50% DOD)	2800 (50% DOD) 1750 (80% DOD)	3000 (50% DOD) 2000 (80% DOD)
Energy density (specific to charge efficiency)	35 Wh/kg	40 Wh/ kg ^c	42-45 Wh/kg °
Charge time to 30 – 80% Opportunity Charging (Highly dependent on charger/charge current)	Less than 2 hrs	1 – 1.5 hrs	1 hr or less
Technology requirements	 Maintenance free present Management of the battery a Harmonization with Chargers b Few products capable of opportunity charging 	 Maintenance free more common Management and monitoring of the battery ^a Harmonization with Chargers Capable of opportunity 	 Maintenance free typical. Management and monitoring of the battery ^a Harmonization with Chargers Capable of opportunity

charging

charging

(+)

Motive Power

Lowering TCO by increasing cycle life, recharge time, and producing maintenance-free batteries.

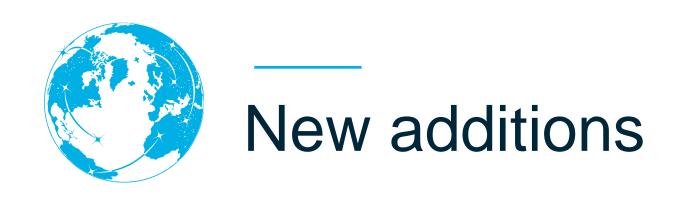
2019-2020 Technical Program

Project ongoings...

Exide/ICMA –In-operando" Neutron Diffraction analysis of the Charge/Discharge Processes inside the Positive Active Mass

Fraunhofer ISC/WUST – "Investigations on the Effect of Carbon Surface Functional Groups on Electrochemical Behavior of Lead Carbon Electrodes

EAI – "Grid Energy Storage Performance Improvement Using Controlled Overcharge"



Fraunhofer ISC/TUB/Ford/Moll – "Improving Dynamic Charge Acceptance and High-Temperature Durability in Automotive Lead Batteries"

Exide/ICMA – "In-operando Neutron Scattering Analysis of the Charge/Discharge Processes inside the Battery Electrodes – ESS focus" – 24 month project

Hammond Group, Inc./East Penn – "Examination of the Effects of Surfactant Coatings & Particle Size of Barium Sulfate on the Structure Changes and Overall Performance of NAM in Energy Storage Systems (ESS) Application" – 27 month project

University of Warwick/Loughborough University - "HALO-SMART-ESS-LAB: Health And Lifespan Optimization with Smart Management Algorithms & Recuperative Testing of ESS of Lead Acid Batteries"

Gridtential/EAI – "Bipolar Lead Batteries for Energy Storage Systems Applications"

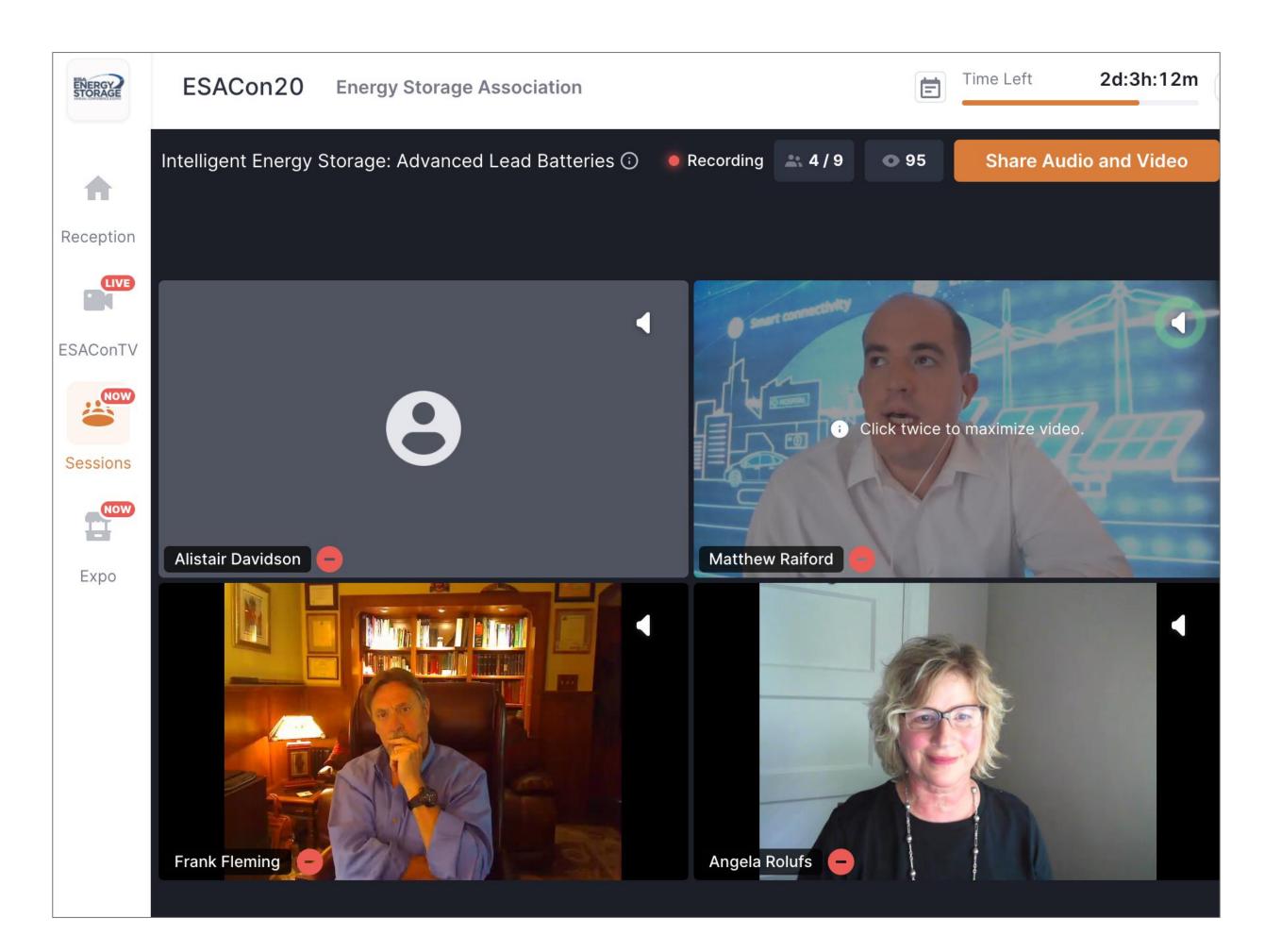
Key Results from Technical Program

DCA - 40% improvement

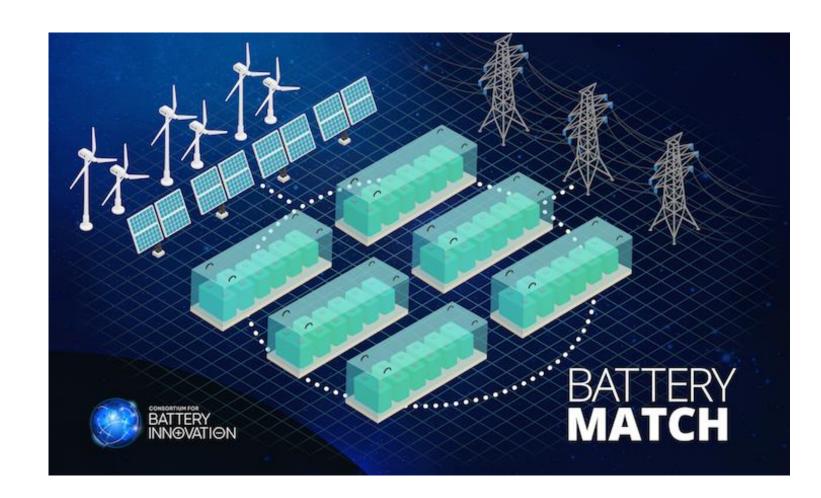
- Optimization of additives
- Bipolar designs
- Novel techniques for understanding battery fundamentals

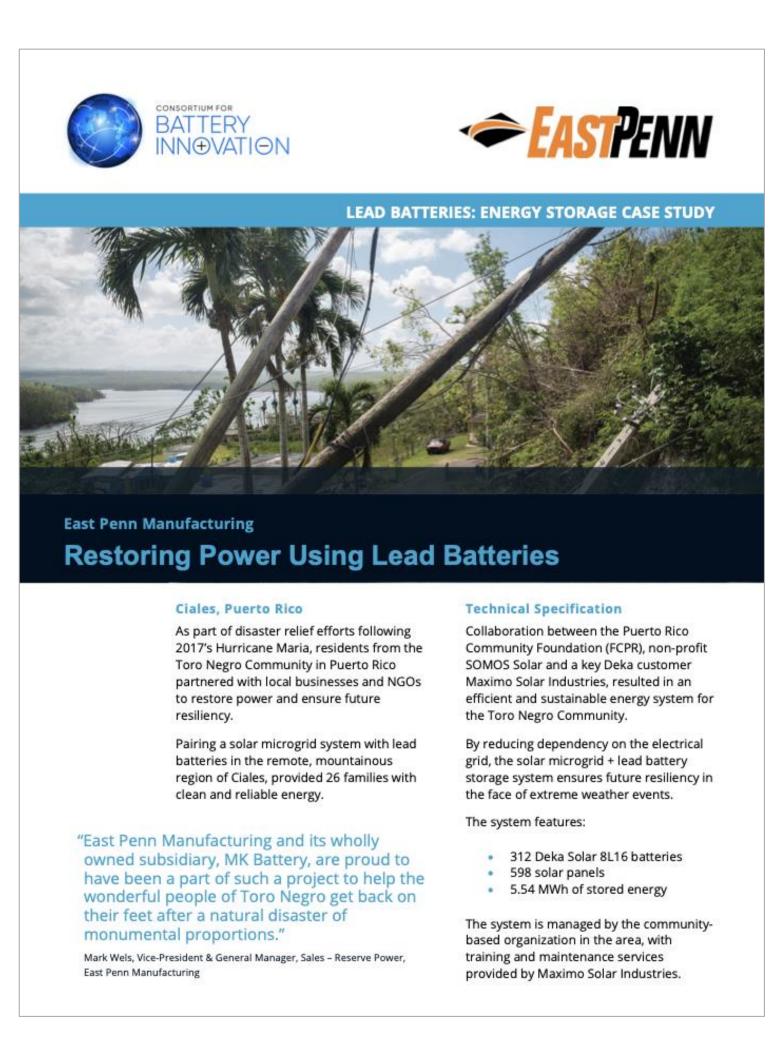
Cycle life - on target to deliver 5,000 cycles

- New understanding on failure modes
- Controlled overcharging
- Novel techniques for understanding battery fundamentals

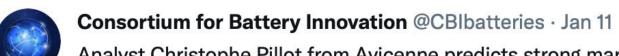


ESS Workshops


- Virtual meetings held in 2020/2021
- Objective to provide information about lead battery benefits in ESS system to end users.
- Well attended, but clear end users only currently consider lithium batteries when choosing batteries for these systems.
- Clear that examples of projects (case studies) currently underway using lead batteries is the best way for communicating our messages.
- Last years workshop was held in conjunction with the US Energy Storage Association's Conference in August (ESACon20)
 - View the event blog here: <u>https://batteryinnovation.org/energy-storage-will-fundamentally-change-the-energy-landscape/</u>



Marketing


Interactive map, energy storage case studies, resources hub and CBI Battery Match

Analyst Christophe Pillot from Avicenne predicts strong market growth for lead #batteries, underpinning the global shift to a low-carbon future. Click here for insights into future predictions for lead #battery #energystorage and #automotive markets: batteryinnovation.org/analysts-predi...

2019-2022 Standards Work

CBI has been working closely with Automotive OEM in Europe to develop new test methods and investigate gassing and water loss

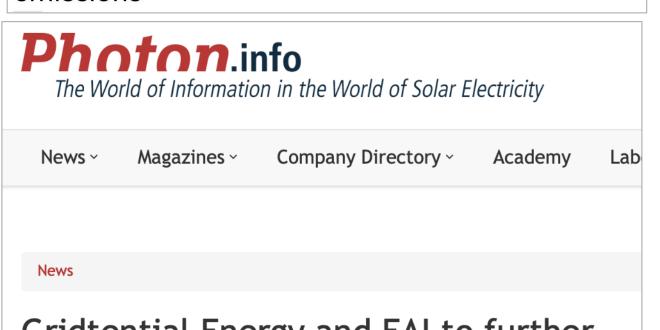
- Supporting European OEMs to address concerns with high temperature durability of automotive lead batteries
- Develop test methods to show improved performance
- Yearly meeting attended by over 100 individuals, including experts from automotive companies and experts from within battery industry
- Demonstrates commitment of European OEMs to continue using lead batteries in future vehicles
- Including looking at auxiliary lead batteries
- Workshops have been held in Germany, Spain and Belgium
 - Successful virtual meetings last week-over 170 attendees over three days
 - Face to face meeting expected later this year

Topic	Plenary and Breakout topics	
1. New Key Life Test (nKLT) for battery durability in hot climate	 Can nKLT predict water consumption in the field? Can nKLT predict corrosion-limited high-temperature battery life? Charge balance – weight loss – gas emissions: Quantifying EFB side reactions Taxi fleet evaluation of EFB with high DCA Introduction scenario for a new standard test? 	
2. Dynamic Charge Acceptance (DCA): Definitions and test methods	 OEM perspective: DCA motivation and observations Comparing battery bench simulations of vehicle CO₂ homologation (WLTP) Run-in vs. fresh battery: Which test predicts which use case? Elements and sequences for a new global DCA test 	
3. Sharing insights for high-temperature durability cell testing	 nKLT results for test cells in comparison to 12V batteries Discussing a 5Ah test-cell construction for NAM evaluation in nKLT Reality check of CBI proposed best practices – invitation for a compact round-robin test Exchange about common lab implementation topics 	
4. Positive electrodes under high-temperature microcycling duty	 Compare morphology & material parameters of positive vs. negative active mass Can PAM additives reduce water consumption? Analytical Techniques for PAM and positive grid Corrosion under microcycling conditions: Do we need new evaluation methods? Can impedance spectra (EIS) track corrosion layer growth in-situ? In-situ information about grid corrosion from gassing and half-cell measurements 	
5. Structure – function relationship behind the DCA Memory Effect	 The physical attributes of the DCA "memory effect": A rapid shared experiment Voltage effect on DCA: new experimental data for 12 battery types A simple impedance spectroscopy experiment: in-situ DCA tracking? Origin of the DCA Memory Effect: The Pb²+/organic buffering theory Origin of the DCA Memory Effect: Role of Ostwald ripening & recrystallization Alternative hypotheses and experimental ideas to verify or falsify thm 	
6. New requirements and standards: Auxiliary batteries and functional safety	 Market trends for "auxiliary" 12V batteries DKE/IEC draft for standardizing new small AUX battery sizes Do we need a norm for "FIT batteries" assuring ASIL compliance? Power tests for 12V batteries beyond CCA Example of a tier-1 solution: Breakdown of Functional Safety requirements to battery, pole-niche sensor and other power supply system components A generic approach to state-of-function (SoF) verification 	
In additional plenary talks, representatives of OEMs and battery suppliers will report		

- · new battery requirements and ongoing standardization activities,
- validation results of the new Micro-Hybrid Test (MHT) at 40 °C is it mature to be published in EN 50342-6?

Further Standards work

- Auxiliary lead battery standard development with EU OEMs CBI is organising with European OEMs a new working
 group to develop standards for auxiliary batteries, a key future market for lead batteries.
- Functional safety standards development with OEMs Further working groups developing functional safety standards for lead batteries - a key attribute for lead batteries and vital to further market assess
- Fire prevention standards (NFPA) Coordination of lead battery industry input showing safety benefits of lead batteries
- UL standards for energy storage applications Coordination of lead battery industry input in UL standards which
 are key to lead batteries being used in energy storage applications
- IFC standard for energy storage applications Coordination of lead battery industry input into building standards which are key for energy storage applications
- IEC standards for auto applications Coordination of lead battery industry input to key IEC automotive standards



Media coverage

Highlights from across the globe

Innovations in energy storage will reduce carbon emissions

Gridtential Energy and EAI to further develop solar powered energy storage systems

elEconom/5ta.es

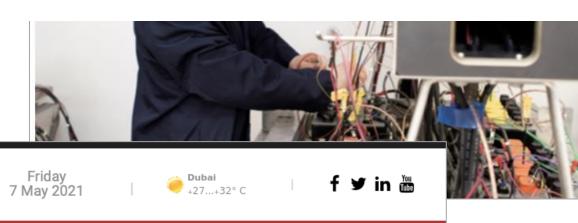
Los científicos del CBI colaboran en un pro para mejorar la vida útil de las baterías de almacenamiento de energía

para el M&A

en España

FORUM

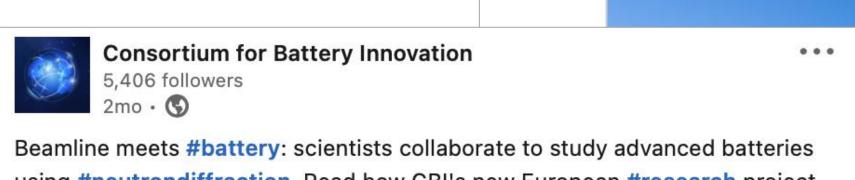
WORLD ECONOMIC


How lead batteries could make EVs safer

Lead batteries are highly safe and reliable.

Image: Unsplash/ **Andrew Roberts**

This article was originally published by the Consortium for Battery Innovation


How are we promoting new research?

Social

Consortium for Battery Innovation @CBIbatteries · Mar 4

Using @Gridtential's advanced lead #batteries & the expertise of EAI, CBI's #research project is driving #energystorage #innovation. Quick and safe 'plug & play' #solarenergy storage systems are being developed to meet booming demand for #renewableenergy: batteryinnovation.org/hi-tech-batter...

using #neutrondiffraction. Read how CBI's new European #research project with Exide Group and Instituto de Nanociencia y Materiales de Ar ... see more

Consortium for Battery Innovation 5,406 followers

The boom in demand for utility #energystorage is driving advanced #battery #research, and Hammond Group, Inc. and East Penn Manufacturing Co. have teamed up for a CBI project to meet the needs of this market. ...see more

Expansion of Battery video series

All you need to know about lead batteries

- Ongoing project to cover all the key topics around lead batteries:
 - Definitions
 - Applications
 - Markets
- Seven videos currently live, with 10+ finalized for release over coming months
- Great engagement on social media:
 - 3000+ impressions on LinkedIn and 17 shares since launch
- Feedback from our audience to cover other topics such as traction batteries and the motive power markets
- Expanding to include versions in Chinese and other regions especially on important topics for the Asian market e.g. e-bikes

An event co-organised by

elbcexpo.org #ELBC

